Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Oncogenesis ; 13(1): 13, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570533

RESUMEN

Change within the intratumoral microbiome is a common feature in lung and other cancers and may influence inflammation and immunity in the tumor microenvironment, affecting growth and metastases. We previously characterized the lung cancer microbiome in patients and identified Acidovorax temperans as enriched in tumors. Here, we instilled A. temperans in an animal model driven by mutant K-ras and Tp53. This revealed A. temperans accelerates tumor development and burden through infiltration of proinflammatory cells. Neutrophils exposed to A. temperans displayed a mature, pro-tumorigenic phenotype with increased cytokine signaling, with a global shift away from IL-1ß signaling. Neutrophil to monocyte and macrophage signaling upregulated MHC II to activate CD4+ T cells, polarizing them to an IL-17A+ phenotype detectable in CD4+ and γδ populations (T17). These T17 cells shared a common gene expression program predictive of poor survival in human LUAD. These data indicate bacterial exposure promotes tumor growth by modulating inflammation.

2.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38513665

RESUMEN

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Asunto(s)
Interleucina-23 , Periodontitis , Humanos , Células Epiteliales , Inflamación , Receptor Toll-Like 5/metabolismo
3.
Nat Protoc ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472495

RESUMEN

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host-microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ .

4.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328040

RESUMEN

Liver cancer ranks amongst the deadliest cancers. Nerves have emerged as an understudied regulator of tumor progression. The parasympathetic vagus nerve influences systemic immunity via acetylcholine (ACh). Whether cholinergic neuroimmune interactions influence hepatocellular carcinoma (HCC) remains uncertain. Liver denervation via hepatic vagotomy (HV) significantly reduced liver tumor burden, while pharmacological enhancement of parasympathetic tone promoted tumor growth. Cholinergic disruption in Rag1KO mice revealed that cholinergic regulation requires adaptive immunity. Further scRNA-seq and in vitro studies indicated that vagal ACh dampens CD8+ T cell activity via muscarinic ACh receptor (AChR) CHRM3. Depletion of CD8+ T cells abrogated HV outcomes and selective deletion of Chrm3 on CD8 + T cells inhibited liver tumor growth. Beyond tumor-specific outcomes, vagotomy improved cancer-associated fatigue and anxiety-like behavior. As microbiota transplantation from HCC donors was sufficient to impair behavior, we investigated putative microbiota-neuroimmune crosstalk. Tumor, rather than vagotomy, robustly altered fecal bacterial composition, increasing Desulfovibrionales and Clostridial taxa. Strikingly, in tumor-free mice, vagotomy permitted HCC-associated microbiota to activate hepatic CD8+ T cells. These findings reveal that gut bacteria influence behavior and liver anti-tumor immunity via a dynamic and pharmaceutically targetable, vagus-liver axis.

5.
Cancer Cell ; 42(1): 16-34, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38157864

RESUMEN

Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Microbiota , Neoplasias , Humanos , Melanoma/terapia , Neoplasias/terapia , Inmunoterapia , Interacciones Microbiota-Huesped
7.
EMBO Mol Med ; 15(11): e18367, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37859621

RESUMEN

Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-ß2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.


Asunto(s)
Ácidos Grasos Omega-3 , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-3/metabolismo , Dieta Occidental , Betacelulina/metabolismo , Multiómica , Fibrosis , Neoplasias Hepáticas/patología , Hígado/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
8.
J Immunol ; 211(7): 1099-1107, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624046

RESUMEN

The gut microbiome is an important modulator of the host immune system. In this study, we found that altering the gut microbiome by oral vancomycin increases liver invariant NKT (iNKT) cell function. Enhanced iNKT cytokine production and activation marker expression were observed in vancomycin-treated mice following both Ag-specific and Ag-independent in vivo iNKT stimulations, with a more prominent effect in the liver than in the spleen. Fecal transplantation studies demonstrated that the iNKT functional regulation is mediated by altering the gut microbiome but uncoupled from the modulation of iNKT cell population size. Interestingly, when stimulated in vitro, iNKT cells from vancomycin-treated mice did not show increased activation, suggesting an indirect regulation. iNKT cells expressed high levels of IL-18 receptor, and vancomycin increased the expression of IL-18 in the liver. Blocking IL-18 by neutralizing Ab or using genetically deficient mice attenuated the enhanced iNKT activation. Liver macrophages were identified as a major source of IL-18. General macrophage depletion by clodronate abolished this iNKT activation. Using anti-CSF-1R depletion or LyzCrexCSF-1RLsL-DTR mice identified CSF-1R+ macrophages as a critical modulator of iNKT function. Vancomycin treatment had no effect on iNKT cell function in vivo in IL-18 knockout macrophage reconstituted mice. Together, our results demonstrate that the gut microbiome controls liver iNKT function via regulating CSF-1R+ macrophages to produce IL-18.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Interleucina-18 , Vancomicina/farmacología , Macrófagos , Hígado , Ratones Noqueados , Proteínas Tirosina Quinasas Receptoras
9.
Front Nutr ; 10: 1147602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609485

RESUMEN

Background: Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identifying early gene indicators contributing to the onset and progression of NAFLD has the potential to develop novel targets for early therapeutic intervention. We report on the early and late transcriptomic signatures of western diet (WD)-induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice, with time-points at 1 week and 40 weeks on the WD. Control Ldlr-/- mice were maintained on a low-fat diet (LFD) for 1 and 40 weeks. Methods: The approach included quantitation of anthropometric and hepatic histology markers of disease as well as the hepatic transcriptome. Results: Only mice fed the WD for 40 weeks revealed evidence of NASH, i.e., hepatic steatosis and fibrosis. RNASeq transcriptome analysis, however, revealed multiple cell-specific changes in gene expression after 1 week that persisted to 40 weeks on the WD. These early markers of disease include induction of acute phase response (Saa1-2, Orm2), fibrosis (Col1A1, Col1A2, TGFß) and NASH associated macrophage (NAM, i.e., Trem2 high, Mmp12 low). We also noted the induction of transcripts associated with metabolic syndrome, including Mmp12, Trem2, Gpnmb, Lgals3 and Lpl. Finally, 1 week of WD feeding was sufficient to significantly induce TNFα, a cytokine involved in both hepatic and systemic inflammation. Conclusion: This study revealed early onset changes in the hepatic transcriptome that develop well before any anthropometric or histological evidence of NALFD or NASH and pointed to cell-specific targeting for the prevention of disease progression.

10.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37651197

RESUMEN

The triggering receptor expressed on myeloid cell 1 (TREM1) plays a critical role in development of chronic inflammatory disorders and the inflamed tumor microenvironment (TME) associated with most solid tumors. We examined whether loss of TREM1 signaling can abrogate the immunosuppressive TME and enhance cancer immunity. To investigate the therapeutic potential of TREM1 in cancer, we used mice deficient in Trem1 and developed a novel small molecule TREM1 inhibitor, VJDT. We demonstrated that genetic or pharmacological TREM1 silencing significantly delayed tumor growth in murine melanoma (B16F10) and fibrosarcoma (MCA205) models. Single-cell RNA-Seq combined with functional assays during TREM1 deficiency revealed decreased immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs) accompanied by expansion in cytotoxic CD8+ T cells and increased PD-1 expression. Furthermore, TREM1 inhibition enhanced the antitumorigenic effect of anti-PD-1 treatment, in part, by limiting MDSC frequency and abrogating T cell exhaustion. In patient-derived melanoma xenograft tumors, treatment with VJDT downregulated key oncogenic signaling pathways involved in cell proliferation, migration, and survival. Our work highlights the role of TREM1 in cancer progression, both intrinsically expressed in cancer cells and extrinsically in the TME. Thus, targeting TREM1 to modify an immunosuppressive TME and improve efficacy of immune checkpoint therapy represents what we believe to be a promising therapeutic approach to cancer.


Asunto(s)
Melanoma , Células Supresoras de Origen Mieloide , Humanos , Animales , Ratones , Receptor Activador Expresado en Células Mieloides 1/genética , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Células Mieloides/patología , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Linfocitos T Citotóxicos/patología , Modelos Animales de Enfermedad , Microambiente Tumoral
11.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37286305

RESUMEN

BACKGROUND: Chemoimmunotherapy represents the standard of care for patients with advanced non-small cell lung cancer (NSCLC) and programmed death-ligand 1 (PD-L1) <50%. Although single-agent pembrolizumab has also demonstrated some activity in this setting, no reliable biomarkers yet exist for selecting patients likely to respond to single-agent immunotherapy. The main purpose of the study was to identify potential new biomarkers associated with progression-free-survival (PFS) within a multiomics analysis. METHODS: PEOPLE (NTC03447678) was a prospective phase II trial evaluating first-line pembrolizumab in patients with advanced EGFR and ALK wild type treatment-naïve NSCLC with PD-L1 <50%. Circulating immune profiling was performed by determination of absolute cell counts with multiparametric flow cytometry on freshly isolated whole blood samples at baseline and at first radiological evaluation. Gene expression profiling was performed using nCounter PanCancer IO 360 Panel (NanoString) on baseline tissue. Gut bacterial taxonomic abundance was obtained by shotgun metagenomic sequencing of stool samples at baseline. Omics data were analyzed with sequential univariate Cox proportional hazards regression predicting PFS, with Benjamini-Hochberg multiple comparisons correction. Biological features significant with univariate analysis were analyzed with multivariate least absolute shrinkage and selection operator (LASSO). RESULTS: From May 2018 to October 2020, 65 patients were enrolled. Median follow-up and PFS were 26.4 and 2.9 months, respectively. LASSO integration analysis, with an optimal lambda of 0.28, showed that peripheral blood natural killer cells/CD56dimCD16+ (HR 0.56, 0.41-0.76, p=0.006) abundance at baseline and non-classical CD14dimCD16+monocytes (HR 0.52, 0.36-0.75, p=0.004), eosinophils (CD15+CD16-) (HR 0.62, 0.44-0.89, p=0.03) and lymphocytes (HR 0.32, 0.19-0.56, p=0.001) after first radiologic evaluation correlated with favorable PFS as well as high baseline expression levels of CD244 (HR 0.74, 0.62-0.87, p=0.05) protein tyrosine phosphatase receptor type C (HR 0.55, 0.38-0.81, p=0.098) and killer cell lectin like receptor B1 (HR 0.76, 0.66-0.89, p=0.05). Interferon-responsive factor 9 and cartilage oligomeric matrix protein genes correlated with unfavorable PFS (HR 3.03, 1.52-6.02, p 0.08 and HR 1.22, 1.08-1.37, p=0.06, corrected). No microbiome features were selected. CONCLUSIONS: This multiomics approach was able to identify immune cell subsets and expression levels of genes associated to PFS in patients with PD-L1 <50% NSCLC treated with first-line pembrolizumab. These preliminary data will be confirmed in the larger multicentric international I3LUNG trial (NCT05537922). TRIAL REGISTRATION NUMBER: 2017-002841-31.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/metabolismo , Multiómica , Estudios Prospectivos , Biomarcadores
12.
Gut Pathog ; 15(1): 28, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322488

RESUMEN

BACKGROUND: Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells. The aim of the study was to investigate the connection between E. coli and Fpr2 in the recovery of colon epithelial cells. RESULTS: The deficiency of Fpr2 was associated with impaired integrity of the colon mucosa and an imbalance of microbiota, characterized by the enrichment of Proteobacteria in the colon. Two serotypes of E. coli, O22:H8 and O91:H21, were identified in the mouse colon through complete genome sequencing. E. coli O22:H8 was found to be prevalent in the gut of mice and exhibited lower virulence compared to O91:H21. Germ-free (GF) mice that were pre-orally inoculated with E. coli O22:H8 showed reduced susceptibility to chemically induced colitis, increased proliferation of epithelial cells, and improved mouse survival. Following infection with E. coli O22:H8, the expression of Fpr2 in colon epithelial cells was upregulated, and the products derived from E. coli O22:H8 induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency increased susceptibility to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened inflammatory responses. Additionally, the population of E. coli was observed to increase in the colons of Fpr2-/- mice with colitis. CONCLUSION: Commensal E. coli O22:H8 stimulated the upregulation of Fpr2 expression in colon epithelial cells, and the products from E. coli induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency led to an increased E. coli population in the colon and delayed recovery of damaged colon epithelial cells in mice with colitis. Therefore, Fpr2 is essential for the effects of commensal E. coli on colon epithelial cell recovery.

13.
J Cachexia Sarcopenia Muscle ; 14(4): 1621-1630, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177862

RESUMEN

BACKGROUND: Cachexia is a wasting syndrome associated with systemic inflammation and metabolic disruption. Detection of the early signs of the disease may contribute to the effective attenuation of associated symptoms. Despite playing a central role in the control of metabolism and inflammation, the liver has received little attention in cachexia. We previously described relevant disruption of metabolic pathways in the organ in an animal model of cachexia, and herein, we adopt the same model to investigate temporal onset of inflammation in the liver. The aim was thus to study inflammation in rodent liver in the well-characterized cachexia model of Walker 256 carcinosarcoma and, in addition, to describe inflammatory alterations in the liver of one cachectic colon cancer patient, as compared to one control and one weight-stable cancer patient. METHODS: Colon cancer patients (one weight stable [WSC] and one cachectic [CC]) and one patient undergoing surgery for cholelithiasis (control, n = 1) were enrolled in the study, after obtainment of fully informed consent. Eight-week-old male rats were subcutaneously inoculated with a Walker 256 carcinosarcoma cell suspension (2 × 107 cells in 1.0 mL; tumour-bearing [T]; or phosphate-buffered saline-controls [C]). The liver was excised on Days 0 (n = 5), 7 (n = 5) and 14 (n = 5) after tumour cell injection. RESULTS: In rodent cachexia, we found progressively higher numbers of CD68+ myeloid cells in the liver along cancer-cachexia development. Similar findings are described for CC, whose liver showed infiltration of the same cell type, compared with both WSC and control patient organs. In advanced rodent cachexia, hepatic phosphorylated c-Jun N-terminal kinase protein content and the inflammasome pathway protein expression were increased in relation to baseline (P < 0.05). These changes were accompanied by augmented expression of the active interleukin-1ß (IL-1ß) form (P < 0.05 for both circulating and hepatic content). CONCLUSIONS: The results show that cancer cachexia is associated with an increase in the number of myeloid cells in rodent and human liver and with modulation of hepatic inflammasome pathway. The latter contributes to the aggravation of systemic inflammation, through increased release of IL-1ß.


Asunto(s)
Carcinosarcoma , Neoplasias del Colon , Humanos , Masculino , Ratas , Animales , Caquexia/patología , Inflamasomas/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Neoplasias del Colon/complicaciones , Carcinosarcoma/complicaciones , Carcinosarcoma/metabolismo
14.
Pediatr Res ; 94(3): 1158-1165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37029236

RESUMEN

BACKGROUND: The biological mechanism by which the maternal gastrointestinal microbiota contributes to fetal growth and neonatal birth weight is currently unknown. The purpose of this study was to explore how the composition of the maternal microbiome in varying pre-gravid body mass index (BMI) groups are associated with neonatal birth weight adjusted for gestational age. METHODS: Retrospective, cross-sectional metagenomic analysis of bio-banked fecal swab biospecimens (n = 102) self-collected by participants in the late second trimester of pregnancy. RESULTS: Through high-dimensional regression analysis using principal components (PC) of the microbiome, we found that the best performing multivariate model explained 22.9% of the variation in neonatal weight adjusted for gestational age. Pre-gravid BMI (p = 0.05), PC3 (p = 0.03), and the interaction of the maternal microbiome with maternal blood glucose on the glucose challenge test (p = 0.01) were significant predictors of neonatal birth weight after adjusting for potential confounders including maternal antibiotic use during gestation and total gestational weight gain. CONCLUSIONS: Our results indicate a significant association between the maternal gastrointestinal microbiome in the late second trimester and neonatal birth weight adjusted for gestational age. Moderated by blood glucose at the time of the universal glucose screening, the gastrointestinal microbiome may have a role in the regulation of fetal growth. IMPACT: Maternal blood glucose in the late second trimester significantly moderates the relationship between the maternal gastrointestinal microbiome and neonatal size adjusted for gestational age. Our findings provide preliminary evidence for fetal programming of neonatal birth weight through the maternal gastrointestinal microbiome during pregnancy.


Asunto(s)
Microbioma Gastrointestinal , Recién Nacido , Embarazo , Femenino , Humanos , Peso al Nacer , Glucemia , Estudios Retrospectivos , Estudios Transversales , Índice de Masa Corporal
15.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36865280

RESUMEN

Technological advances have generated tremendous amounts of high-throughput omics data. Integrating data from multiple cohorts and diverse omics types from new and previously published studies can offer a holistic view of a biological system and aid in deciphering its critical players and key mechanisms. In this protocol, we describe how to use Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that can perform meta-analysis of cohorts and detect master regulators among measured parameters that govern pathological or physiological responses of host-microbiota (or any multi-omic data) interactions in a particular condition or disease. TkNA first reconstructs the network that represents a statistical model capturing the complex relationships between the different omics of the biological system. Here, it selects differential features and their per-group correlations by identifying robust and reproducible patterns of fold change direction and sign of correlation across several cohorts. Next, a causality-sensitive metric, statistical thresholds, and a set of topological criteria are used to select the final edges that form the transkingdom network. The second part of the analysis involves interrogating the network. Using the network's local and global topology metrics, it detects nodes that are responsible for control of given subnetwork or control of communication between kingdoms and/or subnetworks. The underlying basis of the TkNA approach involves fundamental principles including laws of causality, graph theory and information theory. Hence, TkNA can be used for causal inference via network analysis of any host and/or microbiota multi-omics data. This quick and easy-to-run protocol requires very basic familiarity with the Unix command-line environment.

17.
Obesity (Silver Spring) ; 31(2): 412-422, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36562201

RESUMEN

OBJECTIVE: The incidence of women entering into pregnancy with BMI indicating overweight or obesity is rising with concurrent increases in adverse complications such as gestational diabetes. Although several studies have examined the compositional changes to the microbiome across BMI classifications, there has been no investigation regarding changes in microbial function during pregnancy. METHODS: A total of 105 gastrointestinal microbiome biospecimens were used in this analysis. Biospecimens were sequenced by using the Illumina NovaSeq 6000 shotgun metagenomics platform. RESULTS: Findings indicate an enrichment in microbiota from the phylum Firmicutes across all pregravid BMI groups with a decrease in α diversity in groups with BMI indicating obesity or overweight compared with a group with BMI indicating normal weight (p = 0.02). More specifically, women with BMI indicating obesity or overweight had enrichment in Bifidobacterium bifidum and B. adolescentis. Women with BMI > 25 kg/m2 had a higher abundance of microbiota that support biotin synthesis and regulate epithelial cells in the lower gastrointestinal tract. These epithelial cells are responsible for host adaptability to dietary lipid variation and caloric absorption. CONCLUSIONS: Our analysis suggests that there are differences in microbial composition and function between BMI groups. Future research should consider how these changes contribute to specific clinical outcomes during pregnancy.


Asunto(s)
Diabetes Gestacional , Microbioma Gastrointestinal , Embarazo , Humanos , Femenino , Sobrepeso/complicaciones , Índice de Masa Corporal , Obesidad/epidemiología
18.
PLoS One ; 17(12): e0271261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584051

RESUMEN

Over the last two decades, the incidence of gestational diabetes (GDM) has almost doubled resulting in almost 9% of pregnant women diagnosed with GDM. Occurring more frequently than GDM is impaired glucose tolerance (IGT), also known as pre-diabetes, but it has been understudied during pregnancy resulting in a lack of clinical recommendations of maternal and fetal surveillance. The purpose of this retrospective, cross-sectional study was to examine the association between microbial diversity and function of the maternal microbiome with IGT while adjusting for confounding variables. We hypothesized that reduced maternal microbial diversity and increased gene abundance for insulin resistance function will be associated with IGT as defined by a value greater than 140 mg/dL on the glucose challenge test. In the examination of microbial composition between women with IGT and those with normal glucose tolerance (NGT), we found five taxa which were significantly different. Taxa higher in participants with impaired glucose tolerance were Ruminococcacea (p = 0.01), Schaalia turicensis (p<0.05), Oscillibacter (p = 0.03), Oscillospiraceae (p = 0.02), and Methanobrevibacter smithii (p = 0.04). When we further compare participants who have IGT by their pre-gravid BMI, five taxa are significantly different between the BMI groups, Enterobacteriaceae, Dialister micraerophilus, Campylobacter ureolyticus, Proteobacteria, Streptococcus Unclassified (species). All four metrics including the Shannon (p<0.00), Simpson (p<0.00), Inverse Simpson (p = 0.04), and Chao1 (p = 0.04), showed a significant difference in alpha diversity with increased values in the impaired glucose tolerance group. Our study highlights the important gastrointestinal microbiome changes in women with IGT during pregnancy. Understanding the role of the microbiome in regulating glucose tolerance during pregnancy helps clinicians and researchers to understand the importance of IGT as a marker for adverse maternal and neonatal outcomes.


Asunto(s)
Diabetes Gestacional , Microbioma Gastrointestinal , Intolerancia a la Glucosa , Recién Nacido , Femenino , Embarazo , Humanos , Intolerancia a la Glucosa/epidemiología , Glucemia , Microbioma Gastrointestinal/genética , Estudios Retrospectivos , Estudios Transversales , Diabetes Gestacional/epidemiología , Glucosa
19.
Nat Rev Cancer ; 22(12): 703-722, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253536

RESUMEN

Growing evidence suggests that the gut microbiota modulates the efficacy and toxicity of cancer therapy, most notably immunotherapy and its immune-related adverse effects. The poor response to immunotherapy in patients treated with antibiotics supports this influential role of the microbiota. Until recently, results pertaining to the identification of the microbial species responsible for these effects were incongruent, and relatively few studies analysed the underlying mechanisms. A better understanding of the taxonomy of the species involved and of the mechanisms of action has since been achieved. Defined bacterial species have been shown to promote an improved response to immune-checkpoint inhibitors by producing different products or metabolites. However, a suppressive effect of Gram-negative bacteria may be dominant in some unresponsive patients. Machine learning approaches trained on the microbiota composition of patients can predict the ability of patients to respond to immunotherapy with some accuracy. Thus, interest in modulating the microbiota composition to improve patient responsiveness to therapy has been mounting. Clinical proof-of-concept studies have demonstrated that faecal microbiota transplantation or dietary interventions might be utilized clinically to improve the success rate of immunotherapy in patients with cancer. Here, we review recent advances and discuss emerging strategies for microbiota-based cancer therapies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Microbioma Gastrointestinal/fisiología , Inmunoterapia/métodos , Trasplante de Microbiota Fecal/métodos , Neoplasias/tratamiento farmacológico
20.
Sci Transl Med ; 14(658): eabl3927, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35976997

RESUMEN

Unique gut microbiota compositions have been associated with inflammatory diseases, but identifying gut bacterial functions linked to immune activation in humans remains challenging. Translocation of pathogens from mucosal surfaces into peripheral tissues can elicit immune activation, although whether and which gut commensal bacteria translocate in inflammatory diseases is difficult to assess. We report that a subset of commensal gut microbiota constituents that translocate across the gut barrier in mice and humans are associated with heightened systemic immunoglobulin G (IgG) responses. We present a modified high-throughput, culture-independent approach to quantify systemic IgG against gut commensal bacteria in human serum samples without the need for paired stool samples. Using this approach, we highlight several commensal bacterial species that elicit elevated IgG responses in patients with inflammatory bowel disease (IBD) including taxa within the clades Collinsella, Bifidobacterium, Lachnospiraceae, and Ruminococcaceae. These and other taxa identified as translocating bacteria or targets of systemic immunity in IBD concomitantly exhibited heightened transcriptional activity and growth rates in IBD patient gut microbiomes. Our approach represents a complementary tool to illuminate interactions between the host and its gut microbiota and may provide an additional method to identify microbes linked to inflammatory disease.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Microbiota , Animales , Bacterias , Microbioma Gastrointestinal/fisiología , Humanos , Inmunoglobulina G , Enfermedades Inflamatorias del Intestino/microbiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...